>>
Our current research focuses mainly on hyperthermophiles, which are microorganisms that grow near 100°C, and on the roles of metals in microbial metabolism. In a basic science project, we are using the archaeon Pyrococcus furiosus, which grows up to 103°C, to study the structure and…
Our laboratory determined that N-glycosylation of a circulating immunoglobulin was required for receptor binding because long-range contacts within the antibody molecule stabilize key residues to form an interface with the receptor. We believe, based on these results and the high frequency of N-…
The Edison lab develops new approaches in metabolomics and natural products research. Our primary research tool is NMR spectroscopy, but we regularly collaborate with experts in mass spectrometry. A major focus is on data integration between NMR, MS, and other quantitative measurements. We have…
We are an inter-disciplinary research group using concepts and techniques from diverse disciplines including biophysics, biochemistry, and bioinformatics to understand how proteins, the molecular machines of life, work. Our current efforts are focused on protein kinases, a large and diverse…
Selenocysteine, the 21st amino acid, is found in all three domains of life and is inserted at UGA codons. Nature has sophisticated mechanisms to distinguish canonical UGA stop codons from UGA codons designated for Selenocysteine (Sec) insertion. We are interested in…
Our laboratory is interested in the mechanism of metalloproteins involved in radical generation and radical-catalyzed chemical conversions. All of the enzymes being investigated have significant roles in metabolic processes that are essential to human health and some of the enzymes have great…
The work in my laboratory deals with the biosynthesis of heme and it regulation. Heme is an essential cofactor for almost all living organisms and participates in a variety of reactions including the regulation central metabolic processes, oxygen binding and transport and reduction/oxidation…
Research in the Moremen lab focuses on the structure, regulation, and localization of enzymes involved in the biosynthesis, recognition, and catabolism of mammalian glycoproteins. Carbohydrate structures on glycoproteins contribute to many biological recognition events during development,…
Dr. Orlando conducts research on using mass spectrometry (MS) to answer biological questions. He also is concerned with developing new methodologies to increase the amount of information obtained from MS experiments and to reduce the quantity of material needed for analysis. The procedures Dr.…
Research in the Prestegard laboratory focuses on nuclear magnetic resonance (NMR) methods development and application of those methods to challenging problems involving soluble proteins, membrane proteins, cell-surface carbohydrates, and carbohydrate-protein interactions. Many of these systems…
The three dimensional structures of proteins or protein complexes can provide important clues concerning protein function and mechanism of action on a molecular level. The Rose laboratory is interested in using molecular biology coupled with X-ray crystallography and other biophysical techniques…
We are using biochemical, cell biological, genetic, and molecular approaches in conjunction with the yeast system to better understand the function of enzymes involved in the production of isoprenylated proteins. Examples of isoprenylated proteins include the Ras family of oncoproteins, Ras-…
Our research focuses on protein structure and function and protein-protein interactions. We employ an approach combining modern analytical, biophysical and molecular biology techniques, with an emphasis on biomolecular NMR spectroscopy. Our core projects include the study of gene regulation and…
Application of structural biology tools for the structure-function studies of relevant biological macromolecules, which include RNA polymerases, neurophysins and their hormone complexes, glutathione transferases, glutamine binding protein and complex, aldehyde dehydrogenase, augmenter of liver…
Glycosylation plays a variety of roles in basic biological processes, and alterations in these carbohydrate structures contribute to many human diseases. The mammalian glycome contains extensive structural and functional heterogeneity that can vary temporally and spatially during development and…
Our laboratory examines how post-translational modifications (primarily glycosylation) increase functional diversity of proteins. We are focused on congenital disorders of O-glycosylation that includes forms of X-linked intellectual disability (defects in the O-GlcNAc pathway; OGT-CDG,…
Research Areas
Oxygen Sensing
In addition to its role in driving oxidative metabolism, ambient O2 levels carry information of great interest to cells of both unicellular and multicellular organisms. For example, O2 regulates gene expression and modulates ion transport across…
My lab studies the relationship between protein structure and function, and specifically how enzyme activity is regulated. To do this, we use a combination of techniques, including X-ray crystallography, transient and steady state kinetic, sedimentation velocity and other biophysical tools.…
Research in the Woods group examines the relationship between carbohydrate conformation and biological recognition. Areas of particular interest include carbohydrate antigenicity in immunological events, carbohydrate- processing enzymes, and the development of appropriate simulational methods…
We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.
Every dollar given has a direct impact upon our students and faculty.