Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Cancer Biology

Labs associated with

Stress is a part of life, even on the cellular level. To survive and adapt to stresses such as nutrient deprivation or temperature shock, cells have to alter gene expression, especially protein translation, and alterations in these responses have been implicated in multiple human pathologies,…

Our research focuses on glioblastoma, one of the most lethal tumor types in both adults and children. Our lab utilizes cutting-edge technologies in both the oncology and stem cell fields to dissect the cellular and molecular mechanisms underlying the development and progression of glioblastoma.…

Our research concerns the mechanism and consequences of Ty1 retrotransposition in the budding yeast Saccharomyces. The Ty1 life cycle resembles that of retroviruses except transposition is not infectious. Ty1 GAG and POL genes encode the structural and enzymatic proteins required for…

Short Biography:

Dr. Haltiwanger received his B.S. in Biology (1980) and Ph.D. in Biochemistry (1986) from Duke University. He went on to do postdoctoral work at Johns Hopkins University School of Medicine, and took his first independent position as an Assistant Professor in the…

We are studying how nutrients regulate signaling and transcription by O-GlcNAcylation (OGN). OGN is the addition and removal of N-acetylglucosamine from Ser(The) residues of nuclear, cytoplasmic and mitochondrial proteins. The cycling sugar is analogous to phosphorylation and has extensive…

We are an inter-disciplinary research group using concepts and techniques from diverse disciplines including biophysics, biochemistry, and bioinformatics to understand how proteins, the molecular machines of life, work. Our current efforts are focused on protein kinases, a large and diverse…

Biosynthesis and Biological Function of Pectin

What is Pectin?

The cell wall of plants is a polysaccharide and protein rich macromolecular structure that is essential for plant form and function. It is also the meeting point between the plant and its symbionts or pathogens. Pectin…

Research in the Moremen lab focuses on the structure, regulation, and localization of enzymes involved in the biosynthesis, recognition, and catabolism of mammalian glycoproteins. Carbohydrate structures on glycoproteins contribute to many biological recognition events during development,…

Research in the Prestegard laboratory focuses on nuclear magnetic resonance (NMR) methods development and application of those methods to challenging problems involving soluble proteins, membrane proteins, cell-surface carbohydrates, and carbohydrate-protein interactions. Many of these systems…

We are using biochemical, cell biological, genetic, and molecular approaches in conjunction with the yeast system to better understand the function of enzymes involved in the production of isoprenylated proteins. Examples of isoprenylated proteins include the Ras family of oncoproteins, Ras-…

The surfaces of all eukaryotic cells are richly endowed with a diverse array of complex glycoconjugates. Therefore, carbohydrate moieties linked to protein, lipid, and glycosaminoglycan form the interfaces at which cell-cell interactions occur. Consistent with their subcellular location and…

Our research focuses on protein structure and function and protein-protein interactions. We employ an approach combining modern analytical, biophysical and molecular biology techniques, with an emphasis on biomolecular NMR spectroscopy. Our core projects include the study of gene regulation and…

Glycosylation plays a variety of roles in basic biological processes, and alterations in these carbohydrate structures contribute to many human diseases. The mammalian glycome contains extensive structural and functional heterogeneity that can vary temporally and spatially during development and…

Functional diversity increases as you go from DNA to RNA to Proteins. The concept of one gene encodes one gene product is no longer valid. One of the principle ways that diversity is increased is through post-translational modifications of proteins.

Using a combination of methodologies,…

My lab studies the relationship between protein structure and function, and specifically how enzyme activity is regulated. To do this, we use a combination of techniques, including X-ray crystallography, transient and steady state kinetic, sedimentation velocity and other biophysical tools.…

Research in the Woods group examines the relationship between carbohydrate conformation and biological recognition. Areas of particular interest include carbohydrate antigenicity in immunological events, carbohydrate- processing enzymes, and the development of appropriate simulational methods…

My lab is using experimental and computational approaches to study genomic and epigenomic changes occurring during cancer initiation and progression, as well as during normal biological processes such as mammalian genome evolution and cell differentiation. The goal is to understand the roles of…

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.