Labs

Avci Lab focuses on mechanisms of immune activation by carbohydrate antigens; design and development of knowledge-based vaccines and therapeutics against pathogens and cancers.
 
And for more information about our lab we can use the link to our lab homepage:http://avcilab.uga.edu/
The Dailey lab’s research focuses on the enzymes responsible for heme biosynthesis. Current studies involve structure/function investigations of the terminal enzymes of heme biosynthesis and their relationship to the human genetic diseases known as porphyrias, biochemical characterization of the…
The Dalton laboratory is interested in how ‘molecular medicine’ can be used to understand human disease, for the purpose of developing new therapies and cures.
Pluripotent stem cells are being in the Dalton laboratory to decipher the molecular and cellular basis of human disease and to understand…
The Edison lab develops new approaches in metabolomics and natural products research. Our primary research tool is NMR spectroscopy, but we regularly collaborate with experts in mass spectrometry. A major focus is on data integration between NMR, MS, and other quantitative measurements. We have…
My laboratory is interested in the molecular and biochemical basis of parasitic diseases.  We are currently studying African trypanosomes which are important protozoan parasites causing human African sleeping sickness and Nagana in cattle.  We have made important contributions to the understanding…
Short Biography:
Dr. Haltiwanger received his B.S. in Biology (1980) and Ph.D. in Biochemistry (1986) from Duke University. He went on to do postdoctoral work at Johns Hopkins University School of Medicine, and took his first independent position as an Assistant Professor in the Department of…
We are an inter-disciplinary research group using concepts and techniques from diverse disciplines including biophysics, biochemistry, and bioinformatics to understand how proteins, the molecular machines of life, work. Our current efforts are focused on protein kinases, a large and diverse family…
The work in my laboratory deals with the biosynthesis of heme and it regulation. Heme is an essential cofactor for almost all living organisms and participates in a variety of reactions including the regulation central metabolic processes, oxygen binding and transport and reduction/oxidation…
Research in the Moremen lab focuses on the structure, regulation, and localization of enzymes involved in the biosynthesis, recognition, and catabolism of mammalian glycoproteins. Carbohydrate structures on glycoproteins contribute to many biological recognition events during development, oncogenic…
The three dimensional structures of proteins or protein complexes can provide important clues concerning protein function and mechanism of action on a molecular level. The Rose laboratory is interested in using molecular biology coupled with X-ray crystallography and other biophysical techniques to…
Antigenic variation in African trypanosomes
Among the parasites we currently study in the laboratory are African trypanosomes, unicellular eukaryotic protozoa that infect the bloodstream of mammals to cause sleeping sickness in equatorial Africa. Trypanosomiasis continues to be a daily threat to…
We are using biochemical, cell biological, genetic, and molecular approaches in conjunction with the yeast system to better understand the function of enzymes involved in the production of isoprenylated proteins. Examples of isoprenylated proteins include the Ras family of oncoproteins, Ras-related…
My laboratory studies human disorders that involve abnormal synthesis or disposal of glycoproteins. We are currently investigating the pathogenic mechanisms that underlie mucolipidosis II, a lysosomal storage disorder characterized by defects in mannose 6-phosphate biosynthesis, using zebrafish as…
We study CRISPR-Cas immune systems that protect prokaryotes from viruses and provide research tools for important biotechnology and biomedical applications
CRISPR-Cas systems are recently discovered RNA-based adaptive immune systems that control invasions of viruses and other mobile genetic…
Our research focuses on protein structure and function and protein-protein interactions. We employ an approach combining modern analytical, biophysical and molecular biology techniques, with an emphasis on biomolecular NMR spectroscopy. Our core projects include the study of gene regulation and…
Our primary research interest is to understand the role and the underlying mechanisms of heparan sulfate proteoglycans in angiogenesis, stem cell, hemostasis and leukoctye trafficking/inflammation with a long-term goal to develop novel therapeutics to improve the treatment of vascular diseases such…
Functional diversity increases as you go from DNA to RNA to Proteins. The concept of one gene encodes one gene product is no longer valid. One of the principle ways that diversity is increased is through post-translational modifications of proteins.
Using a combination of methodologies, including…
Research in the Woods group examines the relationship between carbohydrate conformation and biological recognition. Areas of particular interest include carbohydrate antigenicity in immunological events, carbohydrate- processing enzymes, and the development of appropriate simulational methods for…
My lab is using experimental and computational approaches to study genomic and epigenomic changes occurring during cancer initiation and progression, as well as during normal biological processes such as mammalian genome evolution and cell differentiation. The goal is to understand the roles of…