Labs

The Dalton laboratory is interested in how ‘molecular medicine’ can be used to understand human disease, for the purpose of developing new therapies and cures.
Pluripotent stem cells are being in the Dalton laboratory to decipher the molecular and cellular basis of human disease and to understand…
Short Biography:
Dr. Haltiwanger received his B.S. in Biology (1980) and Ph.D. in Biochemistry (1986) from Duke University. He went on to do postdoctoral work at Johns Hopkins University School of Medicine, and took his first independent position as an Assistant Professor in the Department of…
The primary goal of our research is to understand the molecular basis of self-renewal and differentiation in normal and cancer stem cells.  Currently we focus on hematopoiesis as a system to uncover the cellular machinery that regulates homeostasis and regeneration in bone marrow as well as to…
The work in my laboratory deals with the biosynthesis of heme and it regulation. Heme is an essential cofactor for almost all living organisms and participates in a variety of reactions including the regulation central metabolic processes, oxygen binding and transport and reduction/oxidation…
The primary focus of the Pierce laboratory centers on understanding the regulation of intercellular recognition and adhesion, particularly those events that involve protein-oligosaccharide interactions. Almost 20 years ago, observations were made that when vertebrate cells became oncogenically…
My laboratory studies human disorders that involve abnormal synthesis or disposal of glycoproteins. We are currently investigating the pathogenic mechanisms that underlie mucolipidosis II, a lysosomal storage disorder characterized by defects in mannose 6-phosphate biosynthesis, using zebrafish as…
The surfaces of all eukaryotic cells are richly endowed with a diverse array of complex glycoconjugates. Therefore, carbohydrate moieties linked to protein, lipid, and glycosaminoglycan form the interfaces at which cell-cell interactions occur. Consistent with their subcellular location and…
Our primary research interest is to understand the role and the underlying mechanisms of heparan sulfate proteoglycans in angiogenesis, stem cell, hemostasis and leukoctye trafficking/inflammation with a long-term goal to develop novel therapeutics to improve the treatment of vascular diseases such…
Functional diversity increases as you go from DNA to RNA to Proteins. The concept of one gene encodes one gene product is no longer valid. One of the principle ways that diversity is increased is through post-translational modifications of proteins.
Using a combination of methodologies, including…
Research Areas
OXYGEN SENSING
In addition to its role in driving oxidative metabolism, ambient O2 levels carry information of great interest to cells of both unicellular and multicellular organisms. For example, O2 regulates gene expression and modulates ion transport across membranes, and cells…